Strategies to Enhance Interfacial Spatial Charge Separation for High‐Efficiency Photocatalytic Overall Water‐Splitting: A Review

Author:

Odabasi Lee Selda12,Lakhera Sandeep Kumar123,Yong Kijung12ORCID

Affiliation:

1. Surface Chemistry Laboratory of Electronic Materials Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea

2. Research Center for Carbon-zero Green Ammonia Cycling Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea

3. Department of Physics and Nanotechnology College of Engineering and Technology SRM Institute of Science and Technology (SRMIST) Kattankulathur Tamilnadu 603203 India

Abstract

Developing efficient photocatalysts for overall water‐splitting (OWS) has garnered considerable attention due to their potential in renewable energy conversion and storage. Enhancing the efficiency of interfacial spatial charge separation poses a key challenge in this field, as it plays a momentous role in the photocatalytic process. In this review article, a range of strategies aimed at improving interfacial spatial charge separation in photocatalysts for realizing high‐efficiency OWS are explored. To provide a comprehensive understanding, first the fundamentals of photocatalytic water‐splitting are introduced and the main bottlenecks in the reaction process, along with various charge separation and transfer mechanisms are identified. Subsequently, recent advancements and efforts in designing spatial charge separation at the interfaces of 0D, 1D, 2D, and 3D nanostructured photocatalysts are discussed. Finally, a summary is presented and a long‐term outlook for spatial charge separation in the field of OWS is offered. By consolidating the current state‐of‐the‐art research, this review highlights the key challenges and favorable circumstances for future advancements in the pursuit of efficient OWS.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3