Affiliation:
1. State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment Dalian University of Technology Dalian Liaoning 116024 China
Abstract
Energy storage and renewable energy sources are critical for addressing the growing global energy demand and reducing the negative environmental impacts of fossil fuels. Carbon nanomaterials are extensively explored as high reliable, reusable, and high‐density mechanical energy storage materials. In this context, machine learning techniques, specifically machine learning potentials (MLPs), are employed to explore the elastic properties of 1D carbon nanowires (CNWs) as a promising candidate for mechanical energy storage applications. The study focuses on the elastic energy storage properties of these CNWs, utilizing MLPs trained with data from first‐principles molecular dynamics simulations. It is found that these materials exhibit an exceptionally high tensile elastic energy storage capacity, with a maximum storage density ranging from 2262 to 2680 kJ kg−1. Furthermore, it is discovered that some CNWs exhibit a superior torsional energy storage capacity compared to their tensile energy storage capacity. Overall, this research demonstrates the effectiveness of machine learning‐based computational approaches in accelerating the exploration and optimization of novel materials. It also highlights the potential of CNWs as promising candidates for future energy storage applications.
Funder
National Natural Science Foundation of China
Subject
Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献