Y and La Doping in CaMnO3 Compounds: Effects of Dopant Identity and Amount on Charge Transport Kinetics

Author:

Azulay Amram1,Caspin Neta1,Freidzon Daniel1,Kauffmann Yaron1,Kleinke Holger2,Amouyal Yaron1ORCID

Affiliation:

1. Department of Materials Science and Engineering Technion–Israel Institute of Technology Haifa 32000 Israel

2. Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada

Abstract

Enhancing electronic transport properties of thermoelectric oxides is of great technological importance. Oxides are promising candidates for waste heat harvesting at elevated temperatures as well as for electricity generation in low‐power applications. To this purpose, fundamental understanding of their electrical and thermal conduction mechanisms is essential. Herein, the conduction mechanism of CaMnO3 materials is focused on and how dopant identity and amount alter the kinetic properties of charge transport is investigated. Ca1−xRxMnO3 compounds with R = Y and La are synthesized, where 0 ≤ x ≤ 0.13, and the electrical conductivity and Seebeck coefficient for temperatures ranging from 300 to 1050 K, indicating that Y‐doped compounds are usually more conductive than their La‐doped counterparts, are measured. Analysis of both in terms of the small polaron hopping model reveals that Y doping reduces conduction activation energies, resulting in higher electrical conductivity and charge carrier mobility. Remarkably high values of thermoelectric power factor for the Ca0.97La0.03MnO3 compound, for example, 300 μWm−1 K−2 at 1050 K are observed; furthermore, these values are preserved for a wide temperature range, rendering this compound a good candidate for heat‐to‐electrical power generation at elevated temperatures.

Funder

Israel Science Foundation

Publisher

Wiley

Subject

Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3