Affiliation:
1. School of Chemistry and Environmental Engineering Wuhan Institute of Technology Donghu New & High Technology Development Zone Wuhan 430205 P. R. China
2. College of Chemistry and Chemical Engineering Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing Wuhan Textile University Wuhan 430200 P. R. China
Abstract
TiO2–based photocatalysis system for splitting water into hydrogen offers a sustainable and green technology to produce clean hydrogen energy. However, pristine TiO2 still exists inherent shortcomings restricting its practical applications. Herein, the impact of postprocessing approaches of protonic titanate on engineering of oxygen vacancy and photocatalytic hydrogen evolution of TiO2−x is studied. Subsequently, interfacial cocatalysts are successfully involved in the optimized TiO2−x for enhanced photocatalytic hydrogen evolution. TiO2−x with the highest photocatalytic hydrogen evolution performance of 3112.09 μmol g−1 h−1, denoted as TiO2–C, is selected to adjust the interface with Cu and MoS2 respectively. Cu–TiO2–C and MoS2–TiO2–C composites are synthesized to enhance the separation ability of photogenerated electron‐hole pairs and significantly improve the photocatalytic hydrogen evolution performance. The photocatalytic hydrogen evolution rates of 5 wt% Cu–TiO2–C and 40 wt% MoS2–TiO2–C are 9225.75 and 5765.48 μmol g−1 h−1, respectively. It is proved that different postprocessing methods can tune the content of oxygen vacancy in TiO2−x and regulate the photocatalytic hydrogen evolution performance of TiO2−x materials. The interface regulation of the cocatalyst also contributes to the separation of photogenerated electron‐hole pairs and serves as active sites to enhance hydrogen evolution performance.
Funder
National Natural Science Foundation of China
Subject
Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献