Impact of Postprocessing Approaches and Interface Cocatalysts Regulation on Photocatalytic Hydrogen Evolution of Protonic Titanate Derived TiO2 Nanostructures

Author:

Cheng Gang1ORCID,Li Shuo1,Wang Chunyan1,Xiong Jinyan2

Affiliation:

1. School of Chemistry and Environmental Engineering Wuhan Institute of Technology Donghu New & High Technology Development Zone Wuhan 430205 P. R. China

2. College of Chemistry and Chemical Engineering Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing Wuhan Textile University Wuhan 430200 P. R. China

Abstract

TiO2–based photocatalysis system for splitting water into hydrogen offers a sustainable and green technology to produce clean hydrogen energy. However, pristine TiO2 still exists inherent shortcomings restricting its practical applications. Herein, the impact of postprocessing approaches of protonic titanate on engineering of oxygen vacancy and photocatalytic hydrogen evolution of TiO2−x is studied. Subsequently, interfacial cocatalysts are successfully involved in the optimized TiO2−x for enhanced photocatalytic hydrogen evolution. TiO2−x with the highest photocatalytic hydrogen evolution performance of 3112.09 μmol g−1 h−1, denoted as TiO2–C, is selected to adjust the interface with Cu and MoS2 respectively. Cu–TiO2–C and MoS2–TiO2–C composites are synthesized to enhance the separation ability of photogenerated electron‐hole pairs and significantly improve the photocatalytic hydrogen evolution performance. The photocatalytic hydrogen evolution rates of 5 wt% Cu–TiO2–C and 40 wt% MoS2–TiO2–C are 9225.75 and 5765.48 μmol g−1 h−1, respectively. It is proved that different postprocessing methods can tune the content of oxygen vacancy in TiO2−x and regulate the photocatalytic hydrogen evolution performance of TiO2−x materials. The interface regulation of the cocatalyst also contributes to the separation of photogenerated electron‐hole pairs and serves as active sites to enhance hydrogen evolution performance.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3