Renewable Hydrogen Production with Steam Reforming of Ethanol Using Siliceous Mesocellular Foam‐Supported Nickel Catalysts

Author:

Murthy Pradeep S.1,Rombaut Igor R. K.1,Ling Huajuan1,Tao Yongwen1,Ye Mengjing1,Chen Fangyuan2,Huang Jun1ORCID

Affiliation:

1. School of Chemical and Biomolecular Engineering Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia

2. Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control Faculty of Environmental Science and Engineering Kunming University of Science and Technology Kunming 680500 China

Abstract

Nickel (Ni) catalysts loaded on siliceous mesocellular foam (MCF‐S) are synthesized via the wet impregnation method with 3, 5, 10, and 15 wt% NiO loadings and different aging levels (no, partial, and full ageing) to determine how both factors affect the progress of the ethanol steam reforming (ESR) reaction. After extensive material characterization testing to determine material porosity, crystallinity, and Ni metal particle size and spatial location, as well as reaction testing at 300–700 °C and 4 H2O: 1 EtOH molar ratio, the fully aged 10 wt% Ni/MCF‐S possesses the strongest structural stability and catalytic activity, reaching 100% EtOH conversion and 68% H2 selectivity at 700 °C. The aging disperses and embeds more Ni nanoparticles within the walls of the mesopores, which promote the ESR reaction from easier diffusion and more active site contact within the pores. Furthermore, the catalyst reveals little signs of deactivation, as the structure remains virtually unchanged, and any coke formed is on the silica support and not over the Ni nanoparticles after the ESR reaction. Such results have demonstrated a proven applicability for ESR and a further need to research about aging effects toward improving structural properties and the catalytic reaction activity.

Publisher

Wiley

Subject

Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3