Recyclable 3D‐Printed Aqueous Lithium‐Ion Battery

Author:

Gulzar Umair1,Egorov Vladimir1,Zhang Yan1,O’Dwyer Colm123ORCID

Affiliation:

1. School of Chemistry, and Tyndall National Institute University College Cork T12 YN60 Cork Ireland

2. Environmental Research Institute University College Cork T23 XE10 Cork Ireland

3. AMBER Research Centre Trinity College Dublin Dublin 2 Dublin Ireland

Abstract

Additive manufacturing, or 3D printing, in energy storage devices such as batteries has the potential to create new form factor small cells that are incorporated into the shape of the device at the design stage. With large‐scale proliferation, sustainable and recyclable materials are needed to avoid used cell waste accumulation, and the cells should have performance metrics that match or exceed existing cells. Inspired by safe aqueous battery chemistries and development in stereolithographic photopolymerization printing methods such as vat polymerization (Vat‐P), a 3D‐printed aqueous lithium‐ion battery developed, using sustainable active cathode and anode materials of LiMn2O4 and FePO4·2H2O, which can be fully recycled using a simple combustion method. This battery is designed to allow a stable cycling, higher energy density option compared to a metallic cell of similar construction, and to ensure better intraelectrode electrical conductivity and rigidity necessary for a viable cell, avoiding brittleness sometimes found in all‐in‐one composite‐printed electrodes. The printed cell has a stable cell‐level capacity of 1.86 mAh, better than that of a comparable metallic coin cell of similar internal chemistry, with an average cell voltage just over 1.0 V. Following combustion, the crystalline phase of LiMn2O4 and a mixed phase of some Fe2O3 mixed with a dominant composition of FePO4 are recovered. All inorganic materials are recovered after combustion.

Funder

H2020 Excellent Science

Irish Research Council for Science, Engineering and Technology

Publisher

Wiley

Subject

Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3