Electrode Engineering Study Toward High‐Energy‐Density Sodium‐Ion Battery Fabrication

Author:

Mandai Toshihiko12ORCID,Tanaka Umi2,Kimura Shin3

Affiliation:

1. Functional Electrolyte Synthesis Team Research Center for Energy and Environmental Materials National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan

2. Center for Advanced Battery Collaboration Research Center for Energy and Environmental Materials National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan

3. Battery Research Platform Research Center for Energy and Environmental Materials National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan

Abstract

Sodium‐ion batteries (SIBs) are emerging as promising energy storage technologies, particularly for grid‐scale applications, due to their low material costs stemming from abundant natural resources. Meeting the increasing demand for higher energy density requires the development of innovative electrode and electrolyte materials, along with advanced analytical and fabrication techniques. However, the energy density of SIBs is often evaluated based solely on the capacities and cell voltages of active materials in half‐cell configurations, neglecting engineering considerations for full‐cell configurations. This study investigates the effects of electrode composition and the balance in capacities between positive and negative electrodes (N/P ratio) on the performance of full‐cell configurations, using Na3V2(PO4)3 (NVP) and hard carbon (HC) as representative electrode materials. Through a systematic analysis, an optimal composition for NVP and HC electrodes is proposed, considering areal capacity and capacity retention during full‐cell operations. Additionally, the importance of balancing the N/P ratio and the necessity of presodiation techniques to achieve high‐energy‐density SIBs are underscored. Overall, this work sheds light on key factors influencing the performance of SIBs and provides insights into strategies for enhancing their energy density and operational efficiency.

Funder

Japan Society for the Promotion of Science

Center of Innovation Program

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3