Recent Advances in Dispersant Technology for Carbon Nanotubes toward Energy Device Applications

Author:

Choi Yong Jun1,Nacpil Edric John Cruz1,Han Jiye1,Zhu Chunhong2,Kim Ick Soo2,Jeon Il12ORCID

Affiliation:

1. Department of Nano Engineering Department of Nano Science and Technology KKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea

2. Nano Fusion Technology Research Group Institute for Fiber Engineering (IFES) Interdisciplinary Cluster for Cutting Edge Research (ICCER) Shinshu University Tokida 3‐15‐1, Ueda Nagano 386‐8567 Japan

Abstract

Carbon nanotubes (CNTs) are of interest in various industries owing to their high aspect ratio, electrical conductivity, and other properties. By maximizing the number of CNTs in their solvents or matrices, the electrical and mechanical performance in applications such as batteries, sensors, and transistors can be enhanced. However, the hydrophobicity of CNTs’ surface induces aggregation that adversely impacts their performance. To overcome this obstacle, many researchers have been designing novel dispersants with performances exceeding that of existing commercial dispersants. This article reviews contemporary studies on CNT dispersants from 2015 to 2022, along with the comprehensive features of CNTs depending on their chirality, number of walls, synthesis methods, and functionalization. Studies of CNT dispersants are primarily organized according to whether aqueous or organic solvents are used. This review article provides a clear perspective of CNT dispersants development today and how to design new CNT dispersants depending on the solvents. A conclusion is given to identify major challenges to the implementation of CNT dispersion and an outlook on future avenues of research.

Funder

Japan Society for the Promotion of Science

National Research Foundation of Korea

Publisher

Wiley

Subject

Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3