2D Fractal Arrays of Ultrathin Silicon Nanowires as Cost‐Effective and High‐Performance Substrate for Supercapacitors

Author:

Leonardi Antonio Alessio1,Arrigo Antonino2,Lo Faro Maria José34,Nastasi Francesco2ORCID,Irrera Alessia1ORCID

Affiliation:

1. CNR‐DSFTM URT LABSENS V.le F. Stagno D’Alcontres 31 98158 Messina Italy

2. Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali Università degli studi di Messina V.le F. Stagno D’Alcontres 31 98158 Messina Italy

3. Dipartimento di Fisica ed Astronomia Università di Catania Via Santa Sofia 64 95123 Catania Italy

4. CNR‐IMM Catania Università Via Santa Sofia 64 95123 Catania Italy

Abstract

Silicon is the most diffused material in the industry; thus, considering its high capacity for energy storage, silicon‐based materials are well studied as battery anodes and supercapacitors. Si nanowires (NWs) emerge due to the high surface to volume ratio, its compatibility with a wafer processing typical of microelectronics, and are studied as anodes for lithium batteries as well as coupled with other materials for supercapacitor application. In this article, the synthesis and application are reported as a lithium anode of 2D fractal arrays of ultrathin Si NWs obtained by a thin‐film metal‐assisted chemical etching (MACE). These Si NWs exhibit a density of about 1012 NWs cm−2, maximizing the surface to volume ratio compared to silver‐salts MACE and other NW fabrication approaches. By using 2.7 μm long NWs, a pseudo‐capacitor behavior with a specific capacitance of about 274.2 μF cm−2 at a scan rate of 50 mV s−1 is obtained. This specific capacitance is two orders of magnitude higher than the one obtained in the same condition by using NWs synthesized by silver‐salt MACE. In this result, the route is opened toward the application of these fractal arrays of ultrathin Si NWs as substrate for supercapacitors with improved efficiency.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3