A Machine Learning Frontier for Predicting LCOE of Photovoltaic System Economics

Author:

Bhatti Satyam1ORCID,Khan Ahsan Raza1,Zoha Ahmed1,Hussain Sajjad1,Ghannam Rami1

Affiliation:

1. James Watt School of Engineering University of Glasgow Glasgow G12 8QQ UK

Abstract

In this research article, the objective is to determine the return on investment (ROI) of photovoltaic (PV) power plants by employing machine learning (ML) techniques. Special focus is done on the levelized cost of electricity (LCOE) as a pivotal economic parameter crucial for facilitating economic decision‐making and enabling quantitative comparisons among different energy generation technologies. Traditional methods of calculating LCOE often rely on fixed singular input values, which may fall short in addressing uncertainties associated with assessing the financial feasibility of PV projects. In response, a dynamic model that integrates essential demographic, energy, and policy data, is introduced encompassing factors such as interest rates, inflation rates, and energy yield, which are anticipated to undergo changes over the lifetime of a PV system. This dynamic model provides a more accurate estimation of LCOE. The comparative analysis of ML algorithms indicates that the auto‐regression integration moving average (ARIMA) model exhibits a high accuracy of 93.8% in predicting consumer electricity prices. The validation of the model is highlighted through two case studies in the United States and the Philippines underscores the potential impact on LCOE values. For instance, in California, LCOE values could vary by nearly 30% (5.03 cents kWh−1 for singular values vs 7.09 cents kWh−1 using our ML model), influencing the perceived risk or economic feasibility of a PV power plant. Additionally, the ML model estimates the ROI for a grid‐connected PV plant in the Philippines at 5.37 years, in contrast to 4.23 years using traditional methods.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3