Hollow Cathode Gas Flow Sputtering of Nickel Oxide Thin Films for Hole‐Transport Layer Application in Perovskite Solar Cells

Author:

Vinoth Kumar Sri Hari Bharath1ORCID,Muydinov Ruslan1ORCID,Maticiuc Natalia2,Alktash Nivin1,Rusu Marin3,Seibertz Bertwin Bilgrim Otto1,Köbler Hans4,Abate Antonio4ORCID,Unold Thomas3,Lauermann Iver2,Szyszka Bernd1

Affiliation:

1. Technology for Thin‐Film Devices Institute of High‐Frequency and Semiconductor System Technologies, Faculty IV Technische Universität Berlin Einsteinufer 25 Berlin 10587 Germany

2. Competence Center Photovoltaics (PVcomB) Helmholtz‐Zentrum Berlin für Materialien und Energie Schwarzschildstraße 3 Berlin 12489 Germany

3. Department Structure and Dynamics of Energy Materials Helmholtz‐Zentrum Berlin für Materialien und Energie Lise‐Meitner Campus Hahn‐Meitner‐Platz 1 Berlin 14109 Germany

4. Department Novel Materials and Interfaces for Photovoltaic Solar Cells Helmholtz‐Zentrum Berlin für Materialien und Energie Kekuléstraße 5 Berlin 12489 Germany

Abstract

Nickel oxide (NiO1+δ) is a versatile material used in various fields such as optoelectronics, spintronics, electrochemistry, and catalysis which is prepared with a wide range of deposition methods. Herein, for the deposition of NiO1+δ films, the reactive gas flow sputtering (GFS) process using a metallic Ni hollow cathode is developed. This technique is distinct and has numerous advantages compared to conventional sputtering methods. The NiO1+δ films are sputtered at low temperatures (100 ºC) for various oxygen partial pressures during the GFS process. Additionally, Cu‐incorporated NiO1+δ (Cu x Ni1−x O1+δ) films are obtained with 5 and 8 at% Cu. The thin films of NiO1+δ are characterized and evaluated as a hole‐transporting layer (HTL) in perovskite solar cells (PSCs). The NiO1+δ devices are benchmarked against state‐of‐the‐art self‐assembled monolayers (SAM) ([2‐(3,6‐dimethoxy‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (also known as MeO2PACz)‐based PSCs. The best‐performing NiO1+δ PSC achieves an efficiency (η) of ≈16% without a passivation layer at the HTL interface and demonstrates better operational stability compared to the SAM device. The findings suggest that further optimization of GFS NiO1+δ devices can lead to higher‐performing and more stable PSCs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3