Dislocations in Crystalline Silicon Solar Cells

Author:

Wang Libo1,Liu Jinpei1,Li Yanzheng1,Wei Ganghui1,Li Qiong1,Fan Zining1,Liu Hao1,An Yue1,Liu Chenxi1,Li Junshuai1,Fu Yujun1,Liu Qiming1ORCID,He Deyan1

Affiliation:

1. School of Materials and Energy LONGi Institute of Future Technology Lanzhou University Lanzhou 730000 China

Abstract

Dislocation is a common extended defect in crystalline silicon solar cells, which affects the recombination characteristics of solar cells by forming deep‐level defect states in the silicon bandgap, thereby reducing the lifetime of minority carrier. Hence, reducing the impact of defects on device performance is an effective strategy to optimize the performance of photovoltaic devices. This article reviews the observation and engineering of dislocation in Si solar cell. The structure and deformation of Si can be directly observed by chemical etching combined with electron microscopy. Also, more information about dislocation is obtained indirectly by monitoring the electrical and optical properties of Si. The classification, density, distribution of dislocations, and their interactions with other defects in Si can affect the lifetime of minority carriers and thereby reduce the performance of Si solar cells. In order to achieve higher cell efficiency, crystals with less or even no dislocation should be obtained. In addition to the specification of controlling the relevant parameters during the growth of silicon ingots to obtain the minimum dislocation density, it is necessary to study the behavior of dislocation in Si wafers under the combined action of external stress, temperature, and other defects.

Funder

National Natural Science Foundation of China

Science and Technology Program of Gansu Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3