Assessing the suitability of fused deposition modeling to produce acrylic removable denture bases

Author:

Alanazi Khalid K.12,Wood Duncan1,Shepherd Joanna1,Stokes Christopher W.1,Asencio Ilida Ortega1ORCID

Affiliation:

1. School of Clinical Dentistry University of Sheffield Sheffield UK

2. Conservative Dental Science Department, College of Dentistry Prince Sattam Bin Abdulaziz University Saudi Arabia

Abstract

AbstractObjectiveTo study the feasibility of using poly methyl methacrylate (PMMA) filament and fused deposition modeling (FDM) to manufacture denture bases via the development of a study that considers both conventional and additive‐based manufacturing techniques.Materials and MethodsFive sample groups were compared: heat and cold cured acrylic resins, CAD/CAM milled PMMA, 3D‐printed PMMA (via FDM), and 3D‐printed methacrylate resin (via stereolithography, SLA). All groups were subjected to mechanical testing (flexural strength, impact strength, and hardness), water sorption and solubility tests, a tooth bonding test, microbiological assessment, and accuracy of fit measurements. The performance of sample groups was referred to ISO 20795‐1 and ISO/TS 19736. The data was analyzed using one‐way ANOVA.ResultsSamples manufactured using FDM performed within ISO specifications for mechanical testing, water sorption, and solubility tests. However, the FDM group failed to achieve the ISO requirements for the tooth bonding test. FDM samples presented a rough surface finish which could ultimately encourage an undesirable high level of microbial adhesion. For accuracy of fit, FDM samples showed a lower degree of accuracy than existing materials.ConclusionsAlthough FDM samples were a cost‐effective option and were able to be quickly manufactured in a reproducible manner, the results demonstrated that current recommended testing regimes for conventionally manufactured denture‐based polymers are not directly applicable to additive‐manufactured denture base polymers. Therefore, new standards should be developed to ensure the correct implementation of additive manufacturing techniques within denture‐based fabrication workflow.

Funder

Prince Sattam bin Abdulaziz University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3