Enhancing RNA 3D Structure Prediction in CASP16: Integrating Physics‐Based Modeling With Machine Learning for Improved Predictions

Author:

Zhang Sicheng1,Li Jun234,Zhou Yuanzhe1,Chen Shi‐Jie156ORCID

Affiliation:

1. Department of Physics and Astronomy University of Missouri Columbia Missouri USA

2. School of Sciences Great Bay University Dongguan China

3. Great Bay Institute for Advanced Study Dongguan China

4. Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems Dongguan China

5. Department of Biochemistry University of Missouri Columbia Missouri USA

6. Institute for Data Science and Informatics University of Missouri Columbia Missouri USA

Abstract

ABSTRACTDuring the 16th Critical Assessment of Structure Prediction (CASP16), the Vfold team participated in the two RNA categories: RNA Monomers and RNA Multimers. The Vfold RNA structure prediction method is hierarchical and hybrid, incorporating physics‐based models (Vfold2D and VfoldMCPX) for 2D structure prediction, template‐based and molecular dynamics simulation‐based models (Vfold‐Pipeline, IsRNA and RNAJP) for 3D structure prediction. Additionally, Vfold integrates knowledge from templates and the state‐of‐the‐art machine learning model AlphaFold3 into our physics‐based models. This integration enhances the prediction accuracy. Here we describe the Vfold approach in CASP16 using selected targets and show how the integration of traditional structure prediction methods with machine learning models can improve RNA structure prediction accuracy.

Funder

National Institutes of Health

National Science Foundation

Publisher

Wiley

Reference80 articles.

1. Has AlphaFold3 Achieved Success for RNA?;Bernard C.;Acta Crystallographica Section D, Structural Biology,2025

2. When Will RNA Get Its AlphaFold Moment?;Schneider B.;Nucleic Acids Research,2023

3. RNA Folding: Conformational Statistics, Folding Kinetics, and Ion Electrostatics;Chen S.‐J.;Annual Review of Biophysics,2008

4. Computational Approaches for RNA Structure Ensemble Deconvolution From Structure Probing Data;Aviran S.;Journal of Molecular Biology,2022

5. Physics‐Based RNA Structure Prediction;Xu X.;Biophysics Reports,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3