Enhanced mechanical and tribological properties of 3D printed short carbon fiber reinforced polyether ether ketone composites

Author:

Lv Xiancheng12ORCID,Yang Shuyan1,Pei Xianqiang23ORCID,Zhang Yaoming23,Wang Qihua2,Wang Tingmei2

Affiliation:

1. School of Mechanical and Automotive Engineering Qingdao University of Technology Qingdao China

2. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou China

3. Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Yantai China

Abstract

AbstractMaterial extrusion additive manufacturing provides an effective solution for fabrication of highly customized polyether ether ketone (PEEK) composite parts with any complex shape. Nevertheless, compared with conventional methods, the mechanical strength of 3D printed carbon fiber reinforced PEEK (CF/PEEK) composites is unsatisfactory due to the weak interface bonding strength and high voids content induced by the temperature difference. To overcome this challenge, a temperature‐control 3D printer was used to investigate the effects of ambient temperature and annealing temperature on the microstructure, crystallization behavior and mechanical properties of 3D printed parts. Moreover, the tribological properties of parts printed at different ambient temperature were also studied under various contact pressure. Experimental results showed that the ambient temperature and annealing treatment directly affected the interfacial bonding (fiber/matrix, filament/filament, layer/layer), crystallinity of printed samples, thus affecting their mechanical and tribological properties. The CF/PEEK parts printed at high ambient temperature of 200°C exhibited outstanding mechanical and tribological properties. This study has positive significance for promoting the application of 3D printed PEEK composites in the field of structural load‐bearing and friction materials.Highlights Structure–property relationships for 3D printed CF/PEEK composites. The ambient temperature strongly affects the thermal and microstructural properties Interaction between crystallization and molecular interface diffusion. Interfacial bonding and crystallinity determine the mechanical properties. Tribological properties are highly dependent on applied pressures.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3