On the potential of using ensemble learning algorithm to approach the partitioning coefficient (k) value in Scheil–Gulliver equation

Author:

Li Ziyu12ORCID,Tan He3,Jarfors Anders E. W.2,Steggo Jacob2,Lattanzi Lucia2ORCID,Jansson Per1

Affiliation:

1. Comptech i Skillingaryd AB Skillingaryd Sweden

2. Department of Materials and Manufacturing School of Engineering Jönköping University Jönköping Sweden

3. Department of Computing School of Engineering Jönköping University Jönköping Sweden

Abstract

AbstractThe Scheil–Gulliver equation is essential for assessing solid fractions during alloy solidification in materials science. Despite the prevalent use of the Calculation of Phase Diagrams (CALPHAD) method, its computational intensity and time are limiting the simulation efficiency. Recently, Artificial Intelligence has emerged as a potent tool in materials science, offering robust and reliable predictive modeling capabilities. This study introduces an ensemble‐based method that has the potential to enhance the prediction of the partitioning coefficient (k) in the Scheil equation by inputting various alloy compositions. The findings demonstrate that this approach can predict the temperature and solid fraction at the eutectic temperature with an accuracy exceeding 90%, while the accuracy for k prediction surpasses 70%. Additionally, a case study on a commercial alloy revealed that the model's predictions are within a 5°C deviation from experimental results, and the predicted solid fraction at the eutectic temperature is within a 15% difference of the values obtained from the CALPHAD model.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3