Short‐term electricity load forecasting based on improved sparrow search algorithm with optimized BiLSTM

Author:

Yang Ming12,Zhang Yiming1,Ai Yuan1

Affiliation:

1. Metrology Center Yunnan Power Grid Co. Ltd. Kunming China

2. Metrology Center Yunnan Key Laboratory of Green Energy Electric Power Measurement Digitalization Control and Protection Kunming China

Abstract

AbstractShort‐term electricity load forecasts (STELF) is an essential part of power system and operation, capable of balancing electricity demand and is vital to the safety and efficient operation of the power system. The research improves the Long short‐term memory (LSTM), combines it with Bidirectional recurrent neural network (BIRNN), and obtains the improved Bidirectional Long Short‐Term Memory Network (BiLSTM) forecasting model. The Sparse Search Algorithm (SSA) can provide a new solution to more difficult global optimization problems and has been improved due to the shortcomings of the search and detection mechanisms. and a simplex mechanism is introduced to obtain an improved Search Mechanism Sparse Search Algorithm (SMSSA) optimized pathfinding algorithm. And constructs the SMSSA‐based optimized BiLSTM for STELF model. By choosing actual data, the model's prediction behavior is confirmed. The results showed that, in descending order, BiLSTM, LSTM, and Recurrent Neural Network (RNN) had the best fitting effects between the predicted and actual values. BiLSTM also had the highest prediction accuracy, with error values of 95.7059 for Root Mean Square Error (RMSE), 79.1575 for Mean Absolute Error (MAE), and 2.1260% for Mean Absolute Percent Error (MAPE). After SMSSA optimized the parameters, SMSSA‐BiLSTM had the best fit and had errors that were much lower than those of the other two models. According to the three error judgment metrics of RMSE, MAE, and MAPE, the errors were 82.6298, 71.9029, and 2.0952%, respectively. This showed that SMSSA‐BiLSTM performed well in short‐term power load forecasting, offering security for the power system's safe operation.

Publisher

Wiley

Subject

Modeling and Simulation,Control and Systems Engineering,Energy (miscellaneous),Signal Processing,Computer Science Applications,Computer Networks and Communications,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3