Full‐Color Electroluminescence from ZnO Nanoparticles‐Based Homojunction Diodes

Author:

Deep Raj1ORCID,Yoshida Toshiyuki1ORCID,Fujita Yasuhisa12ORCID

Affiliation:

1. Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue 690‐8504 Japan

2. R&D Department S‐Nanotech Co‐Creation Co., Ltd. 1060 Nishikawatsu Matsue 690‐0823 Japan

Abstract

Wide‐bandgap zinc oxide (ZnO)‐based light‐emitting diodes (LEDs) have attracted considerable interest for application in solid‐state lighting; however, the absence of dependable high‐quality homojunction has impeded their progress. A p–n homojunction LED is fabricated in this study using arc discharge‐fabricated N‐doped ZnO nanoparticles (NPs) spin coated over a Ga‐doped ZnO thin film. The homojunction LEDs demonstrate pure ultraviolet (UV) emissions with a narrow linewidth even at elevated temperatures. The UV intensity initially increases as the injection current increases to the saturation limit with a change in the peak position, followed by a decrease at higher injection currents. A proportion of UV light is downconverted into visible light using phosphors. Furthermore, the mixing of phosphors and their application to UV‐LED results in white emission with high color rendering and superior optical stability. Notably, the visible spectral peaks do not discernibly change with variations in the operating current. These findings represent significant advancements in the development of stable p‐type ZnO nanostructures, leading to the development of cost‐effective photonic devices.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3