Distributed Bragg Reflector–Mediated Excitation of InAs/InP Quantum Dots Emitting in the Telecom C‐Band

Author:

Musiał Anna1ORCID,Wasiluk Maja1ORCID,Gawełczyk Michał2ORCID,Reithmaier Johann Peter3ORCID,Benyoucef Mohamed3ORCID,Sęk Grzegorz1ORCID,Rudno-Rudziński Wojciech1ORCID

Affiliation:

1. Department of Experimental Physics Faculty of Fundamental Problems of Technology Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland

2. Department of Theoretical Physics Faculty of Fundamental Problems of Technology Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland

3. Institute of Nanostructure Technologies and Analytics (INA) Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) University of Kassel Heinrich-Plett-Str. 40 34132 Kassel Germany

Abstract

Herein, it is demonstrated that optical excitation of InAs quantum dots (QDs) embedded directly in an InP matrix can be mediated via states in a quaternary compound constituting an InP/InGaAlAs bottom distributed Bragg reflector (DBR) and native defects in the InP matrix. It does not only change the carrier relaxation in the structure but could also lead to the imbalanced occupation of QDs with charge carriers, because the band structure favors the transfer of holes. Thermal activation of carrier transfer can be observed as an increase in the emission intensity versus temperature for excitation powers below saturation on the level of both an inhomogeneously broadened QD ensemble and single QD transitions. That increase in the QD emission is accompanied by a decrease in the emission from the InGaAlAs layer at low temperatures. Finally, carrier transfer between the InGaAlAs layer of the DBR and the InAs/InP QDs is directly proven by the photoluminescence excitation spectrum of the QD ensemble. The reported carrier transfer can increase the relaxation time of carriers into the QDs and thus be detrimental to the coherence properties of single and entangled photons. It is important to take it into account while designing QD‐based devices.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Fundacja na rzecz Nauki Polskiej

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3