Affiliation:
1. Department of Physics National Cheng Kung University 701 Tainan Taiwan
Abstract
Using first‐principles calculations, a study on the electronic and optical characteristics of perovskite solar cells containing the orthorhombic phases CH3NH3SnI3 and CH(NH2)2SnI3 is conducted. The analysis includes the examination of relaxed geometry structures, electronic band structures, charge density distributions, and van Hove singularities in the density of states to thoroughly examine the orbital hybridizations in chemical bonds. The optical properties of the materials with and without excitonic effects by analyzing dielectric functions, energy loss functions, absorption coefficients, and reflectance spectra are also studied. The findings identify the close connections between the initial and final orbital hybridizations, as well as prominent optical excitations. Based on the computational predictions, It is believed that lead‐free materials such as CH3NH3SnI3 and CH(NH2)2SnI3 are promising candidates for photovoltaic applications and are worth experimental testing.
Subject
Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献