Defect‐Adjusted Valley Edge States and Rainbow Trapping of Elastic Waves in 2D Topological Phononic Crystals

Author:

Fu Chun-Ming1,Yao Long-Chao1,Huo Shao-Yong1ORCID,Li Hong-Kang1

Affiliation:

1. College of Mechanical Engineering University of South China Hengyang 421001 P. R. China

Abstract

Topological phononic crystals (PnCs) with topologically protected boundary states have important applications in the fields of acoustic wave transmission and control. However, previous studies based on solid‐state PnC systems are mostly limited by fixed structures, resulting in the difficulty to deform the edge states, which partly limits its practical applications. Herein, a 2D solid topological PnC coupled with the defect is designed to achieve the adjustable valley edge state and rainbow trapping. First, by breaking the spatial inversion symmetry, the valley Hall phase transition of elastic wave is realized and valley edge states are obtained. Next, by introducing defects of different widths between the two different valleys’ topological PnCs, both the defect‐adjusted valley edge state and defect state are achieved. Then, by designing different topological PnCs waveguides, the robust transport characteristics of the two above states are compared. Subsequently, a new power divider based on the defect‐adjusted valley edge state is designed, which is found to possess various manners of operation such as equal and unequal power divisions. Finally, based on defect adjustment of the edge states, a rainbow trapping is implemented. This research provides an important guidance for ultrasonic devices, such as waveguides, energy harvesters, and power dividers.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3