Charge‐Mediated Copper‐Iodide‐Based Artificial Synaptic Device with Ultrahigh Neuromorphic Efficacy

Author:

Assi Dani S.1,Huang Hongli1,Kandira Kadir Ufuk1,Alsulaiman Nasser S.1,Theja Vaskuri C. S.12,Abbas Hasan1,Karthikeyan Vaithinathan1,Roy Vellaisamy A. L.3ORCID

Affiliation:

1. Electronics and Nanoscale Engineering James Watt School of Engineering University of Glasgow Glasgow G12 8QQ UK

2. Department of Materials Science and Engineering City University of Hong Kong Kowloon Tong Hong Kong

3. School of Science and Technology Hong Kong Metropolitan University Ho Man Tin Hong Kong

Abstract

In the realm of artificial intelligence, ultrahigh‐performance neuromorphic computing plays a significant role in executing multiple complex operations in parallel while adhering to a more biologically plausible model. Despite their importance, developing an artificial synaptic device to match the human brain's efficiency is an extremely complex task involving high energy consumption and poor parallel processing latency. Herein, a simple molecule, copper‐iodide‐based artificial synaptic device demonstrating core synaptic functions of human neural networks is introduced. Exceptionally high carrier mobility and dielectric constant in the developed device lead to superior efficacies in neuromorphic characteristics with ultrahigh paired‐pusle facilitation index (>195). The results demonstrate biomimetic capabilities that exert a direct influence on neural networks across multiple timescales, ranging from short‐ to long‐term memory. This flexible reconfiguration of neural excitability provided by the copper‐iodide‐based synaptic device positions it as a promising candidate for creating advanced artificial intelligence systems.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3