Quantitative Scanning Transmission Electron Microscopy–High‐Angle‐Annular Dark‐Field Study of the Structure of Pseudo‐2D Sb2Te3 Films Grown by (Quasi) Van der Waals Epitaxy

Author:

Sever Vitomir1,Bernier Nicolas1ORCID,Térébénec Damien1,Sabbione Chiara1,Paterson Jessy1,Castioni Florian1,Quéméré Patrick1,Jannaud Audrey1,Rouvière Jean‐Luc2,Roussel Hervé3,Raty Jean‐Yves4,Hippert Françoise3,Noé Pierre1ORCID

Affiliation:

1. University Grenoble Alpes CEA LETI F‐38000 Grenoble France

2. University Grenoble Alpes CEA IRIG F‐38000 Grenoble France

3. University Grenoble Alpes CNRS Grenoble INP LMGP F‐38000 Grenoble France

4. Condensed Matter Simulation & CESAM, B5 Université de Liège B4000 Sart‐Tilman Belgium

Abstract

Scanning transmission electron microscopy (STEM) techniques are used to improve the understanding of out‐of‐plane oriented Sb2Te3 thin films deposited by sputtering on SiO2 and Si substrates. Nanobeam precession electron diffraction, energy‐dispersive X‐ray spectroscopy, and high‐angle‐annular dark‐field imaging show that the presence of 1–2 atomic planes of Te on top of the substrate is a crucial factor for successful growth of such films, which can be achieved by optimizing cosputtering of Te and Sb2Te3 targets. The formation of an actual van der Waals (vdW) gap between the substrate and the first Sb2Te3 quintuple layer allows for vdW epitaxy. This gap is larger than those separating Te planes in the pseudo‐2D Sb2Te3 structure. HAADF image analysis provides detailed information on the atomic arrangement such as interplanar distances, vdW gaps, and Debye–Waller coefficients, all these with a few pm precision. For the anisotropic atomic displacements, a new methodology is introduced based on the statistical analysis of atomic column positions that provides information on the low‐frequency phonon modes. Ab initio calculations are used to support our results. Overall, this study provides quantitative STEM tools particularly well suited for nonperiodic pseudo‐2D materials, such as Sb2Te3/GeTe superlattices.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3