Orbital Hybridization in Kagome Metal GdV6Sn6 Revealed by Resonant ARPES

Author:

Lv Zheng-Yang12ORCID,Jiang Qi3,Wang Jia-Meng12,Qian Hao-Ji4,Wang De-Yang12,Qiao Shan125ORCID,Ye Mao126ORCID

Affiliation:

1. Center for Excellence in Superconducting Electronics State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 P. R. China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. Center for Transformative Science ShanghaiTech University Shanghai 201210 P. R. China

4. Research Center for Intelligent Chips and Devices Zhejiang Lab Hangzhou 311121 P. R. China

5. School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China

6. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China

Abstract

Novel quantum materials have broad application prospects in spintronic devices and low‐power‐consumption devices. The kagome‐type lattice has special corner‐sharing triangle geometry, providing a rich platform to investigate the relationship of novel correlated topological states, geometry, and strong electron interactions. However, the orbital hybridization in the presence of flat band that originated from the electron localization due to the unique kagome lattice configuration is still unclear. Resonant‐angle‐resolved photoemission spectroscopy is utilized to study the valence band structures of a new vanadium‐based kagome material GdV6Sn6, combined with density functional theory calculation. Herein, a significant hybridization between V 3d and Sn 5p electrons, which paves the way to understand the formation of long‐range magnetic ordering of GdV6Sn6 and other kagome materials at low temperature, is unambiguously revealed in the results.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3