Atomic Structure and Dynamics of Unusual and Wide‐Gap Phase‐Change Chalcogenides: A GeTe2 Case

Author:

Usuki Takeshi1,Benmore Chris J.2,Tverjanovich Andrey3,Bereznev Sergei45,Khomenko Maxim67,Sokolov Anton8,Fontanari Daniele8,Ohara Koji9,Bokova Maria8,Kassem Mohammad8,Bychkov Eugene8ORCID

Affiliation:

1. Faculty of Science Yamagata University Yamagata 990‐8560 Japan

2. X‐ray Science Division Advanced Photon Source Argonne National Laboratory Argonne IL 60439 USA

3. Institute of Chemistry St. Petersburg State University 198504 St. Petersburg Russia

4. Department of Materials and Environmental Technology Tallinn University of Technology 19086 Tallinn Estonia

5. Virumaa College Tallinn University of Technology 30322 Kohtla‐Järve Estonia

6. NRC “Kurchatov Institute” 140700 Shatura Moscow Region Russia

7. Laboratory of Biophotonics Tomsk State University 634050 Tomsk Russia

8. Laboratoire de Physico‐Chimie de l’Atmosphère Université du Littoral Côte d’Opale 59140 Dunkerque France

9. Faculty of Materials for Energy Shimane University 1060, Nishi‐Kawatsu‐Cho Matsue Shimane 690‐8504 Japan

Abstract

Brain‐inspired computing, reconfigurable optical metamaterials, photonic tensor cores, and many other advanced applications require next‐generation phase‐change materials (PCMs) with better energy efficiency and a wider thermal and spectral range for reliable operations. Germanium ditelluride (GeTe2), with higher thermal stability and a larger bandgap compared to current benchmark PCMs, appears promising for THz metasurfaces and the controlled crystallization of atomically thin 2D materials. Using high‐energy X‐Ray diffraction supported by first‐principles simulation, the atomic structure in semiconducting pulsed laser deposition films and metallic high‐temperature liquids is investigated. The results suggest that the structural and chemical metastability of GeTe2, leading to disproportionation into GeTe and Te, is related to high internal pressure during a semiconductor–metal transition, presumably occurring in the supercooled melt. Similar phenomena are expected for canonical GeS2 and GeSe2 under high temperatures and pressures.

Funder

Basic Energy Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3