Second‐Order Topological Corner States in Square Lattice Plasmonic Metasurfaces with C4 and Glide Symmetries

Author:

Om Kwang‐Kwon1,Kim Kwang‐Hyon1ORCID

Affiliation:

1. Institute of Physics State Academy of Sciences PO Box 355, Unjong District Pyongyang People's Republic of Korea

Abstract

Recently, plasmonic metasurfaces have emerged as a platform for topological photonics, exhibiting both advantages of plasmon‐induced tight confinement of local field and topological robustness. Most previous works regarding plasmonic systems are limited to the first‐order topologies and only a few studies dealt with higher‐order topological states in honeycomb lattices. Moreover, second‐order topologies of square lattice plasmonic systems have not yet been studied. This work presents second‐order topological corner states in the square lattices of metallic nanoparticles (NPs) with various symmetries, taking two different C4 and glide symmetries as examples. Their unit cells are obtained from nonprimitive cells, consisting of four equal spheroidal NPs, by expanding (or shrinking), rotating, and resizing. Bulk bands and spectral functions of the unit cells calculated by using the coupled dipole method well agree with COMSOL simulation results, revealing the accuracy of the numerical calculations as well as the experimental realizability of the systems. Second‐order topological corner states and their robustness against structural disorder are numerically shown for three different square lattices. This work will trigger extensive investigations to open a new realm of topological metasurfaces with promising applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3