Electronic Structure Evolution in the Temperature Range of Metal–Insulator Transitions on Sn/Ge(111)

Author:

Nair Maya N.1,Palacio Irene2,Ohtsubo Yoshiyuki3,Taleb‐Ibrahimi Amina4,Michel Enrique G.56,Mascaraque Arantzazu7,Tejeda Antonio48ORCID

Affiliation:

1. Nanoscience Initiative Advanced Science Research Center CUNY New York 10031 USA

2. Instituto de Ciencia de Materiales de Madrid CSIC C/Sor Juana Inés de la Cruz 3 28049 Madrid Spain

3. Grad. School of Frontier Biosciences Osaka University 1‐3 Yamadaoka, Suita Osaka 565‐0871 Japan

4. Synchrotron SOLEIL L’Orme des Merisiers Saint‐Aubin 91192 Gif sur Yvette France

5. Departamento de Física de la Materia Condensada Facultad de Ciencias Universidad Autónoma de Madrid E‐28049 Madrid Spain

6. Condensed Matter Physics Center (IFIMAC) Universidad Autónoma de Madrid E‐28049 Madrid Spain

7. Departamento de Física de Materiales Universidad Complutense de Madrid E‐28040 Madrid Spain

8. Université Paris‐Saclay Laboratoire de Physique des Solides CNRS 91405 Orsay France

Abstract

One‐third of monolayer of Sn adatoms on a Ge(111) substrate forms a 2D triangular lattice with one unpaired electron per site. The system presents a metal–insulator transition when decreasing the temperature and it is known to exhibit strong electron–phonon coupling at 120–150 K. Herein, a study of the electronic band structure for α‐Sn/Ge(111) between 150 and 5 K is reported. Both the experimental Fermi surfaces and the energy dispersions along high symmetry directions as a function of the temperature are presented. At 5 K it is observed a weakly or low‐dispersing spectral feature, exhibiting an extended gap in the reciprocal space. This feature is derived from the topmost occupied band, which is metallic at high temperature and which develops a kink associated with the strong electron–phonon coupling. The spectral evolution is partially explained with an increase of the electron–phonon coupling when decreasing the temperature. The increase of the electron–phonon coupling at low temperatures gives light into the new physics of this 2D system. The bandwidth is progressively reduced when reducing the temperature, enhancing the electronic correlation effects, and triggering the Mott transition.

Funder

Agence Nationale de la Recherche

Ministerio de Ciencia e Innovación

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3