Dual Substrate Effect of Silicon Substrate on Thermal Transport Characteristic of (14,14,14)‐Graphyne: Transformation from Conventional Suppressing Role to Abnormal Promoting Role

Author:

Gao Yufei1ORCID,Zhang Zheyi1,Zhang Xiaoliang1,Zhou Yanguang23,Tang Dawei1

Affiliation:

1. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education School of Energy and Power Engineering Dalian University of Technology Dalian China

2. Department of Mechanical and Aerospace Engineering The Hong Kong University of Science and Technology Hong Kong China

3. HKUST Shenzhen‐Hong Kong Collaborative Innovation Research Institute The Hong Kong University of Science and Technology Shenzhen China

Abstract

Herein, (14,14,14)‐graphyne (GY) supported by silicon substrate is chosen to be the research object. The results demonstrate that the increasing distance between substrate and supported materials (dsub‐sup) results in the enhancement of thermal conductivity (TC) of supported GY, and the TC of supported GY is even higher than that of free‐standing GY when dsub‐sup exceeds a certain value, which means substrate plays an abnormal promoting role in the thermal transport in supported materials (SM). This phenomenon breaks the traditional cognition that the increasing dsub‐sup can only lead to the TC of SM approaching that of free‐standing model. The related mechanism can be seen as the combined impact of weak interaction of long‐dsub‐sup substrate and tensile effect led by lattice mismatch between substrate and GY. Combining with phonon analysis, it can be observed that the influence of substrate shows a closer relationship with phonon scattering, i.e., the anharmonicity, especially the anharmonicity of out‐of‐plane direction. The anomalous promoting effect of long‐dsub‐sup can be also attributed to the weaker scattering of out‐of‐plane phonon, especially the reduced four‐order phonon scattering. This research provides a new idea to suppress the negative effect of substrate on heat dissipation in electronic devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3