Affiliation:
1. Department of Electrical and Computer Engineering University of Wisconsin‐Madison Madison WI 53706 USA
2. Department of Material Science and Engineering University of Wisconsin‐Madison Madison WI 53706 USA
Abstract
UV‐ranged micro‐LEDs are being explored for numerous applications due to their high stability and power efficiency. However, previous reports have shown reduced external quantum efficiency (EQE) and increased leakage current due to the increase in surface‐to‐volume ratio with a decrease in the micro‐LED size. Herein, the size‐related performance for UV‐A micro‐LEDs, ranging from 8 × 8 to 100 × 100 μm2, is studied. These devices exhibit reduced leakage current with the implementation of atomic layer deposition‐based sidewall passivation. A systematic EQE comparison is performed with minimal leakage current and a size‐independent on‐wafer EQE of around 5.5% is obtained. Smaller sized devices experimentally show enhanced EQE at high current density due to their improved heat dissipation capabilities. To the best of authors’ knowledge, this is the highest reported on‐wafer EQE demonstrated in <10 μm dimensioned 368 nm UV LEDs.
Funder
National Science Foundation