Issues with the expected information matrix of linear mixed models provided by popular statistical packages under missingness at random dropout

Author:

Thomadakis Christos1ORCID,Pantazis Nikos1ORCID,Touloumi Giota1ORCID

Affiliation:

1. Department of Hygiene, Epidemiology and Medical Statistics, Medical School National and Kapodistrian University of Athens Athens Greece

Abstract

Likelihood‐based methods ignoring missingness at random (MAR) produce consistent estimates provided that the whole likelihood model is correct. However, the expected information matrix (EIM) depends on the missingness mechanism. It has been shown that calculating the EIM by considering the missing data pattern as fixed (naive EIM) is incorrect under MAR, but the observed information matrix (OIM) is valid under any MAR missingness mechanism. In longitudinal studies, linear mixed models (LMMs) are routinely applied, often without any reference to missingness. However, most popular statistical packages currently provide precision measures for the fixed effects by inverting only the corresponding submatrix of the OIM (naive OIM), which is effectively equivalent to the naive EIM. In this paper, we analytically derive the correct form of the EIM of LMMs under MAR dropout to compare its differences with the naive EIM, which clarifies why the naive EIM fails under MAR. The asymptotic coverage rate of the naive EIM is numerically calculated for two parameters (population slope and slope difference between two groups) under various dropout mechanisms. The naive EIM can severely underestimate the true variance, especially when the degree of MAR dropout is high. Similar trends emerge under misspecified covariance structure, where, even the full OIM may lead to incorrect inferences and sandwich/bootstrap estimators are generally required. Results from simulation studies and application to real data led to similar conclusions. In LMMs, the full OIM should be preferred to the naive EIM/OIM, though if misspecified covariance structure is suspected, robust estimators should be used.

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3