Affiliation:
1. Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds Leeds UK
Abstract
AbstractThe endoplasmic reticulum (ER) organelle is the key intracellular site of both protein and lipid biosynthesis. ER dysfunction, termed ER stress, can result in protein accretion within the ER and cell death; a pathophysiological process contributing to a range of metabolic diseases and cancers. ER stress leads to the activation of a protective signalling cascade termed the Unfolded Protein Response (UPR). However, chronic UPR activation can ultimately result in cellular apoptosis. Emerging evidence suggests that cells undergoing ER stress and UPR activation can release extracellular signals that can propagate UPR activation to target tissues in a cell non‐autonomous signalling mechanism. Separately, studies have determined that the UPR plays a key regulatory role in the biosynthesis of bioactive signalling lipids including sphingolipids and ceramides. Here we weigh the evidence to combine these concepts and propose that during ER stress, UPR activation drives the biosynthesis of ceramide lipids, which are exported and function as cell non‐autonomous signals to propagate UPR activation in target cells and tissues.
Funder
Biotechnology and Biological Sciences Research Council
Diabetes UK
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献