Cochlear tonotopy from proteins to perception

Author:

Fettiplace Robert1ORCID

Affiliation:

1. Department of Neuroscience University of Wisconsin School of Medicine and Public Health Madison WI USA

Abstract

AbstractA ubiquitous feature of the auditory organ in amniotes is the longitudinal mapping of neuronal characteristic frequencies (CFs), which increase exponentially with distance along the organ. The exponential tonotopic map reflects variation in hair cell properties according to cochlear location and is thought to stem from concentration gradients in diffusible morphogenic proteins during embryonic development. While in all amniotes the spatial gradient is initiated by sonic hedgehog (SHH), released from the notochord and floorplate, subsequent molecular pathways are not fully understood. In chickens, BMP7 is one such morphogen, secreted from the distal end of the cochlea. In mammals, the developmental mechanism differs from birds and may depend on cochlear location. A consequence of exponential maps is that each octave occupies an equal distance on the cochlea, a spacing preserved in the tonotopic maps in higher auditory brain regions. This may facilitate frequency analysis and recognition of acoustic sequences.

Funder

National Institute on Deafness and Other Communication Disorders

Publisher

Wiley

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3