Diversity and functional specialization of H3K9‐specific histone methyltransferases

Author:

Koryakov Dmitry E.1ORCID

Affiliation:

1. Lab of Molecular Cytogenetics Institute of Molecular and Cellular Biology Novosibirsk Russia

Abstract

AbstractHistone modifications play a critical role in the control over activities of the eukaryotic genome; among these chemical alterations, the methylation of lysine K9 in histone H3 (H3K9) is one of the most extensively studied. The number of enzymes capable of methylating H3K9 varies greatly across different organisms: in fission yeast, only one such methyltransferase is present, whereas in mammals, 10 are known. If there are several such enzymes, each of them must have some specific function, and they can interact with one another. Thus arises a complex system of interchangeability, “division of labor,” and contacts with each other and with diverse proteins. Histone methyltransferases specialize in the number of methyl groups that they attach and have different intracellular localizations as well as different distributions on chromosomes. Each also shows distinct binding to different types of sequences and has a specific set of nonhistone substrates.

Funder

Russian Science Foundation

Publisher

Wiley

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3