Joint MAPLE: Accelerated joint T1 and T2*$$ {{\mathrm{T}}_2}^{\ast } $$ mapping with scan‐specific self‐supervised networks

Author:

Heydari Amir1ORCID,Ahmadi Abbas1ORCID,Kim Tae Hyung234ORCID,Bilgic Berkin345ORCID

Affiliation:

1. Department of Industrial Engineering and Management Systems Amirkabir University of Technology Tehran Iran

2. Department of Computer Engineering Hongik University Seoul Korea

3. Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA

4. Radiology, Harvard Medical School Boston Massachusetts USA

5. Harvard/MIT Health Sciences and Technology Cambridge Massachusetts USA

Abstract

AbstractPurposeQuantitative MRI finds important applications in clinical and research studies. However, it is encoding intensive and may suffer from prohibitively long scan times. Accelerated MR parameter mapping techniques have been developed to help address these challenges. Here, an accelerated joint T1, , frequency and proton density mapping technique with scan‐specific self‐supervised network reconstruction is proposed to synergistically combine parallel imaging, model‐based, and deep learning approaches to speed up parameter mapping.MethodsProposed framework, Joint MAPLE, includes parallel imaging, signal modeling, and data consistency blocks which are optimized jointly in a combined loss function. A scan‐specific self‐supervised reconstruction is embedded into the framework, which takes advantage of multi‐contrast data from a multi‐echo, multi‐flip angle, gradient echo acquisition.ResultsIn comparison with parallel reconstruction techniques powered by low‐rank methods, emerging scan specific networks, and model‐based estimation approaches, the proposed framework reduces the reconstruction error in parameter maps by approximately two‐fold on average at acceleration rates as high as R = 16 with uniform sampling. It can outperform evaluated parallel reconstruction techniques up to four‐fold on average in the presence of challenging sub‐sampling masks. It is observed that Joint MAPLE performs well at extreme acceleration rates of R = 25 and R = 36 with error values less than 20%.ConclusionJoint MAPLE enables higher fidelity parameter estimation at high acceleration rates by synergistically combining parallel imaging and model‐based parameter mapping and exploiting multi‐echo, multi‐flip angle datasets. Utilizing a scan‐specific self‐supervised reconstruction obviates the need for large data sets for training while improving the parameter estimation ability.

Funder

Nvidia

National Research Foundation of Korea

Ministry of Science and ICT, South Korea

National Institutes of Health

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3