Observation of high sediment concentrations entrained in jumble river ice

Author:

Arp Christopher D.1ORCID,Bondurant Allen C.1,Clement Sarah2,Eidam Emily3,Langhorst Ted4,Pavelsky Tamlin M.5,Davis Julianne5,Spellman Katie V.2

Affiliation:

1. Water and Environmental Research Center University of Alaska Fairbanks Fairbanks Alaska USA

2. International Arctic Research Center University of Alaska Fairbanks Fairbanks Alaska USA

3. Department of Earth, Ocean, and Atmospheric Sciences Oregon State University Corvallis Oregon USA

4. Department of Civil and Environmental Engineering University of Massachusetts Amherst Amherst Massachusetts USA

5. Department of Earth, Marine, and Environmental Sciences University of North Carolina Chapel Hill North Carolina USA

Abstract

AbstractIce formation is generally considered to exclude many particles and most solutes and thus be relatively pure compared to ambient waters. Because river ice forms by a combination of thermal and mechanical processes, some level of sediment entrainment in the ice column is likely, though reports of sediment in river ice are limited. We observed high and sporadic levels of silt and sand in ice of the Kuskokwim and Tanana rivers (Alaska, the United States) during routine field studies. These observations led us to make a more comprehensive survey of sediment entrainment in river ice of the Kuskokwim and Yukon rivers and several of their tributaries. We collected and subsampled 48 ice cores from 19 different river locations in March 2023, which included concurrent measurements of water turbidity, velocity, and depth. Approximately 60% of cores contained detectable levels of sediment, averaging 438 mg/L with median concentrations exceeding 1000 mg/L in three cores from the Yukon and Kuskokwim main stems. Many cores had even higher concentrations at certain intervals, with seven cores having subsamples exceeding 2000 mg/L; these were often located in the middle or lower portion of the ice column. Jumble ice, formed mechanically by frazil‐pan jamming during freeze‐up, was generally the best predictor of higher sediment entrainment, and these locations often had higher under‐ice velocities and depths. Our observation of high and widespread sediment entrainment in northern river ice, particularly in jumble‐ice fields, may have implications for sediment transport regimes, ice strength and transportation safety, and how rivers break up in the springtime.

Funder

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimating Riverine Total Suspended Solids From Spatiotemporal Satellite Sensor Fusion;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3