Siamese DeNPE network framework for fault detection of batch process

Author:

Liu Kai12ORCID,Zhao Xiaoqiang123,Mou Miao12ORCID,Hui Yongyong123ORCID

Affiliation:

1. College of Electrical and Information Engineering Lanzhou University of Technology Lanzhou China

2. Gansu Key Laboratory of Advanced Control for Industrial Processes Lanzhou China

3. National Experimental Teaching Centre of Electrical and Control Engineering Lanzhou University of Technology Lanzhou China

Abstract

AbstractIn batch processes, it is crucial to ensure safe production by fault detection. However, the long batch duration, limited runs, and strong nonlinearity of the data pose challenges. Incipient faults with small amplitudes further complicate the detection process. To achieve safe production, motivated by deep learning strategies, we propose a new fault detection method of batch process called Siamese deep neighbourhood preserving embedding network (SDeNPE). First, the DeNPE network is constructed by means of NPE and kernel functions, which utilizes the different types of kernel functions in the kernel mapping layer to extract diverse deep nonlinear features and overcome strong nonlinearity in the process data. Then, the Siamese network is used to obtain the different features between the data and improve the recognition of incipient faults. In addition, the deep extraction and Siamese network allow for batches of training data reduction without diminishing the performance of fault detection. Finally, we utilize monitoring statistics to complete the fault detection process. Two batch process cases involving the penicillin fermentation process and the semiconductor etching process demonstrate the superior fault detection performance of the proposed SDeNPE over the other comparison methods.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3