Energy efficiency optimization strategies for greenhouse‐based crop cultivation: A review

Author:

Kaur Arshdeep1,Sonawane Vijay1,Rosha Pali2

Affiliation:

1. Department of Computer Science and Engineering Dr. A. P. J. Abdul Kalam University Indore India

2. Clean Energy Technologies Research Institute, Process Systems Engineering, Faculty of Engineering and Applied Science, University of Regina Regina Saskatchewan Canada

Abstract

AbstractWorldwide, food scarcity is becoming a debatable concern among the scientific fraternity due to the increased populace, leading to decreased arable land. This has compelled us to explore various innovative and technological solutions, for example, large‐scale greenhouse farming, to meet the surging demand for field production. In this context, research efforts have been continually made by various scientists and researchers to explore more control strategies/algorithms for keeping the indoor climate comfortable and enhancing the greenhouse's energy effectiveness. Considering this, an initiative was made to summarize the documented research findings in the last decade focusing on energy‐efficient greenhouse‐based crop cultivation. The findings of some studies considering selective parametric conditions have been presented in graphs/tables for reader clarity and discussion. Initially, the studies on existing energy efficient strategies, parameters, monitoring systems, sensing networks, and control algorithms have been discussed. A state of the art review found that control strategies are essential in low‐energy greenhouses since they influence crop yield and cost. It was observed that advanced control algorithms and energy conservation in greenhouses received more attention due to wide spread application, high compatibility, low‐cost, and user‐friendly operations. In terms of future perspectives, it is anticipated that the development of machine learning, big data, and artificial intelligence, combining these technologies with traditional and advanced control strategies would lead to a revolution in the management of greenhouse energy.

Publisher

Wiley

Subject

General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3