A robust neural network model for fault detection in the presence of mislabelled data

Author:

Alauddin Mohammad12,Khan Faisal23ORCID,Imtiaz Syed2ORCID,Ahmed Salim2ORCID,Amyotte Paul1

Affiliation:

1. Department of Process Engineering and Applied Science Dalhousie University Halifax Nova Scotia Canada

2. Centre for Risk, Integrity, and Safety Engineering (C‐RISE), Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John's NL Canada

3. Mary Kay O'Connor Process Safety Center, Texas A&M University College Station Texas USA

Abstract

AbstractSeveral data‐driven methodologies for process monitoring and detection of faults or abnormalities have been developed for the safety of processing systems. The effectiveness of data‐based models, however, is impacted by the volume and quality of training data. This work presents a robust neural network model for addressing the mislabelled and low‐quality data in detecting faults and process abnormalities. The approach is based on harnessing data quality features along with supervisory labels in the network training. The data quality has been computed using the Mahalanobis distances and trusted centres of each class of data such as normal and faulty data. The method has been examined for detecting abnormalities in two case studies; a continuous stirred tank heater problem for detecting leaks and the Tennessee Eastman chemical process for detecting step and sticking faults. The performance of the proposed robust artificial neural networks (ANN) model is evaluated in terms of accuracy, fault detection rate, false alarm rate, and classification index at varying extents of mislabelling, namely, 1%, 5%, and 10% mislabelled data. The proposed model demonstrates higher detection performance, especially at increased labels of mislabelled data where the performance of the conventional ANN is severely impacted. The proposed methodology can be advantageous in handling mislabelled and low‐quality data issues which are crucial in the data‐driven modelling of processing systems.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3