Valorization of refinery flue gas through tri‐reforming and direct hydrogenation routes

Author:

Sunkara Sushma1,Pankhedkar Nimish1,Gudi Ravindra1

Affiliation:

1. Department of Chemical Engineering Indian Institute of Technology, Bombay Mumbai India

Abstract

AbstractThe rising amount of greenhouse gases has been contributing to global warming and, subsequently, climate change. Industries such as refineries and power plants emit a significant amount of CO2 into the atmosphere. It is imperative to curb anthropogenic CO2 emissions, and hence, in this effort, we explore the utilization of a refinery emission stream to produce value‐added chemicals. The chosen emission stream for the said purpose is a typical flue gas stream from refineries. Following the capture step, this CO2 stream has been leveraged for subsequent valorization processes. Two strategies have been proposed in this paper to valorize the captured carbon dioxide. The first strategy employs the tri‐reforming process with a refinery‐specific fuel gas stream as the co‐reactant. The resulting syngas from tri‐reforming has been converted to chemicals such as methanol (MET) and ethanol. Furthermore, to improve the amount of CO2 valorized, another approach with green hydrogen has been considered. The second strategy aims at direct hydrogenation of the captured CO2 stream to produce MET and ethanol. The proposed strategies analyze the feasibility of valorizing captured CO2 from flue gas to MET and ethanol in terms of gross margin per feed and percentage of CO2 valorization. The performance assessment and analysis of the proposed processes have been carried out using simulations in Aspen Plus® that exhibited up to 74% valorization of CO2 into valuable chemicals.

Publisher

Wiley

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3