Genetic variants of G‐protein coupled receptors associated with pubertal disorders

Author:

Suzuki Erina1ORCID,Miyado Mami12ORCID,Kuroki Yoko345ORCID,Fukami Maki15ORCID

Affiliation:

1. Department of Molecular Endocrinology National Research Institute for Child Health and Development Tokyo Japan

2. Department of Food and Nutrition Beppu University Oita Japan

3. Department of Genome Medicine, National Center for Child Health and Development Tokyo Japan

4. Division of Collaborative Research, National Center for Child Health and Development Tokyo Japan

5. Division of Diversity Research National Research Institute for Child Health and Development Tokyo Japan

Abstract

AbstractBackgroundThe human hypothalamic–pituitary‐gonadal (HPG) axis is the regulatory center for pubertal development. This axis involves six G‐protein coupled receptors (GPCRs) encoded by KISS1R, TACR3, PROKR2, GNRHR, LHCGR, and FSHR.MethodsPrevious studies have identified several rare variants of the six GPCR genes in patients with pubertal disorders. In vitro assays and animal studies have provided information on the function of wild‐type and variant GPCRs.Main FindingsOf the six GPCRs, those encoded by KISS1R and TACR3 are likely to reside at the top of the HPG axis. Several loss‐of‐function variants in the six genes were shown to cause late/absent puberty. In particular, variants in KISS1R, TACR3, PROKR2, and GNRHR lead to hypogonadotropic hypogonadism in autosomal dominant, recessive, and oligogenic manners. Furthermore, a few gain‐of‐function variants of KISS1R, PROKR2, and LHCGR have been implicated in precocious puberty. The human HPG axis may contain additional GPCRs.ConclusionThe six GPCRs in the HPG axis govern pubertal development through fine‐tuning of hormone secretion. Rare sequence variants in these genes jointly account for a certain percentage of genetic causes of pubertal disorders. Still, much remains to be clarified about the molecular network involving the six GPCRs.

Funder

Japan Agency for Medical Research and Development

Japan Society for the Promotion of Science

National Center for Child Health and Development

Takeda Science Foundation

Publisher

Wiley

Subject

Cell Biology,Reproductive Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3