Tough PEG‐only hydrogels with complex 3D structure enabled by digital light processing of “all‐PEG” resins

Author:

Anindita Safira Noor1,Conti Riccardo2,Zauchner Doris3ORCID,Paunović Nevena1ORCID,Qiu Wanwan3,Buzhor Marina Green1,Krivitsky Adva1,Luo Zhi1ORCID,Müller Ralph3,Grützmacher Hansjörg2,Qin Xiao‐Hua3ORCID,Leroux Jean‐Christophe1,Bao Yinyin1ORCID

Affiliation:

1. Department of Chemistry and Applied Biosciences Institute of Pharmaceutical Sciences ETH Zurich Zurich Switzerland

2. Laboratory of Inorganic Chemistry Department of Chemistry and Applied Biosciences ETH Zurich Zurich Switzerland

3. Department of Health Sciences and Technology Institute for Biomechanics ETH Zurich Zurich Switzerland

Abstract

AbstractDigital light processing (DLP) of structurally complex poly(ethylene glycol) (PEG) hydrogels with high mechanical toughness represents a long‐standing challenge in the field of 3D printing. Here, we report a 3D printing approach for the high‐resolution manufacturing of structurally complex and mechanically strong PEG hydrogels via heat‐assisted DLP. Instead of using aqueous solutions of photo‐crosslinkable monomers, PEG macromonomer melts were first printed in the absence of water, resulting in bulk PEG networks. Then, post‐printing swelling of the printed networks was achieved in water, producing high‐fidelity 3D hydrogels with complex structures. By employing a dual‐macromonomer resin containing a PEG‐based four‐arm macrophotoinitiator, “all‐PEG” hydrogel constructs were produced with compressive toughness up to 1.3 MJ m−3. By this approach, porous 3D hydrogel scaffolds with trabecular‐like architecture were fabricated, and the scaffold surface supported cell attachment and the formation of a monolayer mimicking bone‐lining cells. This study highlights the promises of heat‐assisted DLP of PEG photopolymers for hydrogel fabrication, which may accelerate the development of 3D tissue‐like constructs for regenerative medicine.

Publisher

Wiley

Subject

General Medicine,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Biomaterials for 3D Printing via a Synergistic Dual-Photopolymer Design;ACS Applied Polymer Materials;2024-02-06

2. Gum Arabic-based three-dimensional printed hydrogel for customizable sensors;International Journal of Biological Macromolecules;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3