Sequence identification and in silico characterization of novel thermophilic lipases from Geobacillus species

Author:

Sürmeli Yusuf12,Tekedar Hasan Cihad23,Şanlı‐Mohamed Gülşah24ORCID

Affiliation:

1. Department of Agricultural Biotechnology Tekirdağ Namık Kemal University Tekirdağ Turkey

2. Department of Biotechnology and Bioengineering İzmir Institute of Technology İzmir Turkey

3. College of Veterinary Medicine Mississippi State University Mississippi State Mississippi USA

4. Department of Chemistry İzmir Institute of Technology İzmir Turkey

Abstract

AbstractMicrobial lipases are utilized in various biotechnological areas, including pharmaceuticals, food, biodiesel, and detergents. In this study, we cloned and sequenced Lip21 and Lip33 genes from Geobacillus sp. GS21 and Geobacillus sp. GS33, then we in silico and experimentally analyzed the encoded lipases. For this purpose, Lip21 and Lip33 were cloned, sequenced, and their amino acid sequences were investigated for determination of biophysicochemical characteristics, evolutionary relationships, and sequence similarities. 3D models were built and computationally affirmed by various bioinformatics tools, and enzyme‐ligand interactions were investigated by docking analysis using six ligands. Biophysicochemical property of Lip21 and Lip33 was also determined experimentally and the results demonstrated that they had similar isoelectric point (pI) (6.21) and Tm (75.5°C) values as Tm was revealed by denatured protein analysis of the circular dichroism spectrum and pI was obtained by isoelectric focusing. Phylogeny analysis indicated that Lip21 and Lip33 were the closest to lipases from Geobacillus sp. SBS‐4S and Geobacillus thermoleovorans, respectively. Alignment analysis demonstrated that S144–D348–H389 was catalytic triad residues in Lip21 and Lip33, and enzymes possessed a conserved Gly‐X‐Ser‐X‐Gly motif containing catalytic serine. 3D structure analysis indicated that Lip21 and Lip33 highly resembled each other and they were α/β hydrolase‐fold enzymes with large lid domains. BANΔIT analysis results showed that Lip21 and Lip33 had higher thermal stability, compared to other thermostable Geobacillus lipases. Docking results revealed that Lip21‐ and Lip33‐docked complexes possessed common residues (H112, K115, Q162, E163, and S141) that interacted with the substrates, except paranitrophenyl (pNP)‐C10 and pNP‐C12, indicating that these residues might have a significant action on medium and short‐chain fatty acid esters. Thus, Lip21 and Lip33 can be potential candidates for different industrial applications.

Publisher

Wiley

Subject

Process Chemistry and Technology,Drug Discovery,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,General Medicine,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3