Effect of coal gasification coarse slag on soil water and nutrition at an arid opencast coal mine site in Northwest China

Author:

Li Xiaonan1,Zhang Kai1ORCID,Bao Kaikai1,Zhao Jiangang1,Wang Xiaoyuan1,Tang Yuwei1

Affiliation:

1. Laboratory of Mining Ecological Environment Protection and Restoration School of Chemical and Environmental Engineering, China University of Mining and Technology Beijing China

Abstract

AbstractThough amendment using coal gasification coarse slag (CGCS) has garnered attention, the intrinsic mechanism of how CGCS, a glassy material, works to amend physicochemical properties in the soil is not yet clear. This study aimed to analyze the effects of different CGCS particle sizes on soil water infiltration and nutrient retention, and to identify the relationship between the physicochemical properties of the amended soil and the water nutrient amendment. The continuous infiltration pattern of soil water and plant growth after the amendment was measured using an indoor continuous dynamic soil column simulation experiment and a field pot experiment of CGCS with different particle sizes (0.25, 1, and 2 mm). The CGCS amendment loosened the soil, improved the pore channels, and amended the water infiltration. However, this process was negatively correlated with CGCS particle size. The Kostiakov performed better in simulating soil water infiltration of heterogeneous dump soil. The CGCS amendment had no heavy metal risk and promoted plant growth. Though amendment enhanced nutrients, in terms of soil organic matter (SOM), the presence of C must be verified by a long team of nutrient cycling if it can be transformed into accessible SOM. Therefore, CGCS amended water nutrition by amending the soil's physical structure. Soil pore adsorption improved water nutrient availability and had a positive effect on chemical properties, which promoted crop growth. The amendment effect was greatest at 0.25 mm particle size.

Funder

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3