Morphometric analysis of ice scour lakes in Iceland: A proxy for ice sheet dynamics

Author:

Mastro Halley M.1,Principato Sarah M.1ORCID,Sobel Ilana B.1,Benediktsson Ívar Örn2,Aradóttir Nína2ORCID

Affiliation:

1. Department of Environmental Studies Gettysburg College Gettysburg Pennsylvania USA

2. Institute of Earth Sciences University of Iceland Reykjavik Iceland

Abstract

AbstractGlacial erosion rates on the Iceland landscape throughout the Pleistocene are not well quantified. Ice scour lakes provide an opportunity to investigate glacial erosive activity and relative intensity because they commonly form in areas beneath ice sheets due to intense quarrying. This study evaluates ice scour lake morphology and density as a potential proxy for paleo‐ice flow direction and basal thermal regime for parts of the Iceland Ice Sheet. Using GIS analysis, properties of ice scour lakes are examined in regions that experienced different rates of ice flow during and following the Last Glacial Maximum (LGM), as interpreted from streamlined subglacial landforms. The primary input datasets were topographic, hydrologic and bedrock data. Lake distribution and morphology were quantified for all natural lakes of Iceland (n = 30 169), with close examination of three 400 km2 sub‐regions in Vestfirðir (n = 904), Húnaflói (n = 69) and Bakkaheiði (n = 232). Lake distribution parameters include density, packing and centroid elevation. PolyMorph‐2D was used to quantify lake morphology including orientation, area and elongation ratio. Ice scour lake density, packing and elevation were all greatest on Vestfirðir. The high density and packing of lakes across Vestfirðir suggests unique ice dynamics relative to the other two sub‐regions, and multidirectional flow of lake axes supports the presence of an independent ice cap covering Vestfirðir. Differential intensity of glacial erosion interpreted from regions of high and low lake density on Bakkaheiði supports a proposed ice divide in Northeast Iceland. The orientation of lakes align with the flow directions of proposed LGM ice streams in Northern and Northeast Iceland. Ice scour lakes were most elongate on average on Bakkaheiði, which supports fast ice flow. Improving understanding of former ice sheet basal thermal regime and paleo‐ice flow velocity serves to inform modern controls on ice sheet stability and ice sheet basal processes.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3