Affiliation:
1. National Laboratory of Solid State Microstructures (NLSSM), Jiangsu Key Laboratory of Artificial Functional Materials Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University Nanjing China
2. State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics Nanjing China
Abstract
AbstractGraphene and boron nitride (BN) foams, as two types of three‐dimensional (3D) nanomaterials consisting of two‐dimensional (2D) nanosheets, can inherit a series of excellent properties of the 2D individuals. The internal 3D network can prevent aggregation or restacking between isolated graphene or BN nanosheets, and provide a highway for phonon/electron transports. Moreover, the interconnected porous structure creates a continual channel for the mass exchange of exotic species. The light‐element graphene and BN foams can thus possess the characteristics of low density, high porosity, high surface area, and excellent mechanical, thermal, and electrical properties. Benefiting from these advantages, they show a wide range of applications. The usual synthesis methods and the recent functional applications of graphene and BN foams are reviewed herein, including their applications as supporting materials, elastic materials, acoustic shielding materials, thermal interface materials, electromagnetic shielding materials, adsorption materials, electrocatalysis and thermal catalyses materials, electrochemical energy storage, and thermal energy storage materials. Current challenges and outlooks are additionally discussed.
Funder
National Natural Science Foundation of China
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献