Constructing Mal‐Efferocytic Macrophage Model and Its Atherosclerotic Spheroids and Rat Model for Therapeutic Evaluation

Author:

Zou Dan12ORCID,Yang Ping12,Liu Jianan12,Dai Fanfan12,Xiao Yangyang12,Zhao Ansha12,Huang Nan12

Affiliation:

1. Key Laboratory for Advanced Technologies of Materials Ministry of Education Chengdu 610031 P. R. China

2. School of Material Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China

Abstract

AbstractEfferocytosis, responsible for apoptotic cell clearance, is an essential factor against atherosclerosis. It is reported that efferocytosis is severely impaired in fibroatheroma, especially in vulnerable thin cap fibroatheroma. However, there is a shortage of studies on efferocytosis defects in cell and animal models. Here, the impacts of oxidized low density lipoprotein (ox‐LDL) and glut 1 inhibitor (STF31) on efferocytosis of macrophages are studied, and an evaluation system is constructed. Through regulating the cell ratios and stimulus, three types of atherosclerotic spheroids are fabricated, and a necrotic core emerges with surrounding apoptotic cells. Rat models present a similar phenomenon in that substantial apoptotic cells are uncleared in time in vulnerable plaque, and the model period is shortened to 7 weeks. Mechanism studies reveal that ox‐LDL, through mRNA and miRNA modulation, downregulates efferocytosis receptor (PPARγ/LXRα/MerTK), internalization molecule (SLC29a1), and upregulates the competitive receptor CD300a that inhibits efferocytosis receptor‐ligand binding process. The foam cell differentiation has also confirmed that CD36 and Lp‐PLA2 levels are significantly elevated, and macrophages present an interesting transition into prothrombic phenotype. Collectively, the atherosclerotic models featured by efferocytosis defect provide a comprehensive platform to evaluate the efficacy of medicine and biomaterials for atherosclerosis treatment.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Biochemistry, Genetics and Molecular Biology,Biomedical Engineering,Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3