Age‐Related Decrease in Pellino‐1 Expression Contributes to Osteoclast‐Mediated Bone Loss

Author:

Yoon Dong Suk12,Oh Seung Eun34,Lee Kyoung‐Mi34,Jung Sujin34,Ko Eun Ae3,Kim Tae‐Gyun56,Park Kwang Hwan3,Lee Jin Woo34ORCID

Affiliation:

1. Department of Biomedical Science Hwasung Medi‐Science University Hwasung Gyeonggi‐Do 18274 South Korea

2. Stem Cell and Aging Laboratory Institute of HSMU Medi‐Science Hwasung Medi‐Science University Hwaseong Gyeonggi‐Do 18274 South Korea

3. Department of Orthopaedic Surgery Yonsei University College of Medicine Seoul 03722 South Korea

4. Department of Orthopaedic Surgery Graduate School of Medical Science Brain Korea 21 Project Yonsei University College of Medicine Seoul 03722 South Korea

5. Institute for Immunology and Immunological Diseases Yonsei University College of Medicine Seoul 03722 South Korea

6. Department of Dermatology Severance Hospital Cutaneous Biology Research Institute Yonsei University College of Medicine Seoul 03722 South Korea

Abstract

AbstractAging‐related bone loss is driven by various biological factors, such as imbalanced bone metabolism from decreased osteoblast and increased osteoclast activities. Various transcriptional and post‐transcriptional factors increase osteoclast activity with aging; however, studies regarding the post‐translational regulators of osteoclast activity are still limited. The ubiquitin E3 ligase Pellino‐1 is a well‐known post‐translational regulator of inflammation. However, how Pellino‐1 expression regulation affects osteoclast differentiation remains unclear. This study determined that Pellino‐1 levels are reduced in bone marrow monocytes (BMMs) from 40‐week‐old mice compared to 4‐week‐old mice. Interestingly, conditional Knockout (cKO) of Pellino‐1 in 6‐week‐old mice resulted in decreased bone mass, reduced body size, and lower weight than in Pellino‐1 floxed mice; however, these differences are not observed in 20‐week‐old mice. The increased number of tartrate‐resistant acid phosphatase (TRAP)‐positive cells and serum levels of C‐terminal telopeptides of type I collagen, a marker of bone resorption, in 6‐week‐old Pellino‐1 cKO mice implied a connection between Pellino‐1 and the osteoclast population. Enhanced TRAP activity and upregulation of osteoclast genes in BMMs from the cKO mice indicate that Pellino‐1 deletion affects osteoclast differentiation, leading to decreased bone mass and heightened osteoclast activity. Thus, targeting Pellino‐1 could be a potential gene therapy for managing and preventing osteoporosis.

Funder

National Research Foundation of Korea

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3