Advances in Nerve Injury Models on a Chip

Author:

Lee Donghee1,Yang Kai2,Xie Jingwei13ORCID

Affiliation:

1. Department of Surgery‐Transplant and Mary and Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA

2. Department of Surgery‐Plastic Surgery University of Nebraska Medical Center Omaha NE 68198 USA

3. Department of Mechanical and Materials Engineering College of Engineering University of Nebraska Lincoln Lincoln NE 68588 USA

Abstract

AbstractRegeneration and functional recovery of the damaged nerve are challenging due to the need for effective therapeutic drugs, biomaterials, and approaches. The poor outcome of the treatment of nerve injury stems from the incomplete understanding of axonal biology and interactions between neurons and the surrounding environment, such as glial cells and extracellular matrix. Microfluidic devices, in combination with various injury techniques, have been applied to test biological hypotheses in nerve injury and nerve regeneration. The microfluidic devices provide multiple advantages over the in vitro cell culture on a petri dish and in vivo animal models because a specific part of the neuronal environment can be manipulated using physical and chemical interventions. In addition, single‐cell behavior and interactions between neurons and glial cells can be visualized and quantified on microfluidic platforms. In this article, current in vitro nerve injury models on a chip that mimics in vivo axonal injuries and the regeneration process of axons are summarized. The microfluidic‐based nerve injury models could enhance the understanding of the physiological and pathophysiological mechanisms of nerve tissues and simultaneously serve as powerful drug and biomaterial screening platforms.

Funder

University of Nebraska Medical Center

Publisher

Wiley

Subject

General Biochemistry, Genetics and Molecular Biology,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3