Electrospinning and Cell Fibers in Biomedical Applications

Author:

Zhao Qilong1,Du Xuemin1,Wang Min2

Affiliation:

1. Institute of Biomedical and Health Engineering Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

2. Department of Mechanical Engineering The University of Hong Kong Pokfulam Road Hong Kong

Abstract

AbstractHuman body tissues such as muscle, blood vessels, tendon/ligaments, and nerves have fiber‐like fascicle morphologies, where ordered organization of cells and extracellular matrix (ECM) within the bundles in specific 3D manners orchestrates cells and ECM to provide tissue functions. Through engineering cell fibers (which are fibers containing living cells) as living building blocks with the help of emerging “bottom‐up” biomanufacturing technologies, it is now possible to reconstitute/recreate the fiber‐like fascicle morphologies and their spatiotemporally specific cell‐cell/cell‐ECM interactions in vitro, thereby enabling the modeling, therapy, or repair of these fibrous tissues. In this article, a concise review is provided of the “bottom‐up” biomanufacturing technologies and materials usable for fabricating cell fibers, with an emphasis on electrospinning that can effectively and efficiently produce thin cell fibers and with properly designed processes, 3D cell‐laden structures that mimic those of native fibrous tissues. The importance and applications of cell fibers as models, therapeutic platforms, or analogs/replacements for tissues for areas such as drug testing, cell therapy, and tissue engineering are highlighted. Challenges, in terms of biomimicry of high‐order hierarchical structures and complex dynamic cellular microenvironments of native tissues, as well as opportunities for cell fibers in a myriad of biomedical applications, are discussed.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3