Postnatal 14D is the Key Window for Mice Intestinal Development‐ An Insight from Age‐Dependent Antibiotic‐Mediated Gut Microbial Dysbiosis Study

Author:

Pandey Uday12ORCID,Tambat Subodh3ORCID,Aich Palok12ORCID

Affiliation:

1. School of Biological Sciences National Institute of Science Education and Research (NISER) P.O. Jatni Khurda Odisha 752050 India

2. Homi Bhabha National Institute Training School Complex Anushaktinagar Mumbai 400094 India

3. Department of Life Sciences and Healthcare Persistent Systems Limited Pune Maharashtra 411004 India

Abstract

AbstractThe postnatal period is one of the critical windows for the structure‐function development of the gastrointestinal tract and associated mucosal immunity. Along with other constituent members, recent studies suggest the contribution of gut microbiota in maintaining host health, immunity, and development. Although the gut microbiota's role in maintaining barrier integrity is known, its function in early life development still needs to be better understood. To understand the details of gut microbiota's effects on intestinal integrity, epithelium development, and immune profile, the route of antibiotic‐mediated perturbation is taken. Mice on days 7(P7D), 14(P14D), 21(P21D) and 28(P28D) are sacrificed and 16S rRNA metagenomic analysis is performed. The barrier integrity, tight junction proteins (TJPs) expression, intestinal epithelial cell (IEC) markers, and inflammatory cytokines are analyzed. Results reveal a postnatal age‐related impact of gut microbiota perturbation, with a gradual increase in the relative abundance of Proteobacteria and a reduction in Bacteroidetes and Firmicutes. Significant barrier integrity disruption, reduced TJPs and IECs marker expression, and increased systemic inflammation at P14D of AVNM‐treated mice are found. Moreover, the microbiota transplantation shows recolonization of Verrucomicrobia, proving a causal role in barrier functions. The investigation reveals P14D as a critical period for neonatal intestinal development, regulated by specific microbiota composition.

Funder

National Institute of Science Education and Research

Publisher

Wiley

Subject

General Biochemistry, Genetics and Molecular Biology,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3